5. Describe how the graph of each of the following functions can be obtained from the graph of y = f(x). (Fill in table where appropriate).

FUNCTION	TRANSLATION (Horizontal/Vertical)	REFLECTION (x-axis/y-axis)	STRETCH/ COMPRESSION (Horizontal/Vertical)	MAPPING RULE
y = -f(3x - 6) + 4	- 1 willing who	in x axis	factor /3	(x,y) -> (=x+z,-4+4)
$y = 4f\left(\frac{-1}{3}(x-6)\right)$	-6 units right	reflection in y axis	vertical.s.	(x,y) -> (-3x+6,4)

6. The graph of $y = \sqrt{x}$ is compressed horizontally by a factor of $\frac{1}{3}$, reflected on the x-axis and translated 3 units upward and 2 units to the right. Write the equation of the transformed function, and state its domain and range.

(3.1.1) EQUATION
$$Y = -\sqrt{3(x-2)} + 3$$
DOMAIN: $\frac{5}{2} \times \mathbb{R} / x \ge 2\frac{3}{2}$
RANGE: $\frac{5}{2} \times \mathbb{R} / y \le 3\frac{3}{2}$

(10)

(ii) The graph of $y = x^2$ is expanded vertically by a factor of $\frac{3}{4}$, translated 5 units to the left, and translated 6 units downward. Write the equation of the transformed function, and state its domain and range.

(3,1,1) EQUATION
$$\underline{y} = \frac{3}{4}(x+5)^2 - 6$$

DOMAIN: $\underline{\{x \in \mathbb{R}^{\frac{3}{2}}\}}$

RANGE: $\underline{\{y \in \mathbb{R}^{\frac{3}{2}}\}} = -6\overline{\}}$