Malvern Collegiate Institute Grade 12 Advanced Functions MHF 4U SAMPLE FINAL EXAMINATION 2012

Part A: Multiple Choice: 10 marks

Identify the letter of the choice that best completes the statement.

1) When $f(x)=2 x^{3}-11 x^{3}-4 x+a$ is divided by $x+2$, the remainder is -4 . What is the value of a ?
a) 48
b) 56
c) -48
d) -56
2) Which of the following intervals represent the solution to the inequality $(x-3)(x+1)(x+3)<0$?
a) $x<3$, and $-1<x<3$
b) $x \in(-3,-1) \cup 3, \infty)$
c) $x \in(-\infty,-3) \cup(-1,3)$
d) $-1<x<3$ and $x>2$
3) Which statement is false?
a) The real roots of the equation $x^{4}-6 x^{2}-27=0$ are the x-intercepts of the graph of the polynomial $f(x)=x^{4}-6 x^{2}-27$
b) The number of zeroes the graph of $f(x)=x^{3}+3 x^{2}-x-3$ has is 3 .
c) The graph of a linear relation has a maximum of one x-intercept, and the graph of a quadratic function has a maximum of two x-intercepts.
d) If the graph of a particular polynomial function has exactly two x-intercepts, then the function must be quadratic.
4) $y=x^{3}$ is stretched horizontally by a factor of 2 , and then translated horizontally 3 units to the right. What is the equation of the resulting graph?
a) $y=(2(x+3))^{3}$
b) $y=\left(\frac{1}{2}(x-3)\right)^{3}$
c) $y=\left(\frac{1}{2} x\right)^{3}-3$
d) $y=(2 x-3)^{3}$
5) The real root(s) of the function $f(x)=\frac{x^{2}-1}{x-1}$ are:
a) 1 and -1
b) only 1
c) only - 1
d) None of these
6) The vertical asymptotes for $m(x)=\frac{-4(x-3)}{3 x^{2}-14 x-24}$ are:
a) $x=3,-\frac{4}{3}, 6$
b) $x=-\frac{4}{3},-6$
c) $x=-6,3$
d) $x=-\frac{4}{3}, 6$
7) The rational function $q(x)=\frac{x^{2}-6 x+11}{x-2}$ has an oblique asymptote at:
a) $q(x)=x-4$
b) $q(x)=x+4$
c) $q(x)=x-8$
d) $q(x)=x+8$

Part B - Short Answer: 28 marks

1) Consider the function $h(x)=4 x^{4}(2 x-1)^{2}(2-x)$:
a) Determine the degree.
b) Determine its end behaviour.
c) Determine the zeroes .
2) Sketch a quartic function with:

- Zeroes -2 (order 2), 3 (order 2)
- $x \rightarrow \pm \infty, y \rightarrow \infty$

3) Given the graph of f below:

a) Determine an equation in factored form passing through the point $(-3,8)$.

4) Consider the following characteristics of a reciprocal quadratic function:

- $y \in(0,-\infty)$
- Vertical asymptotes $x=3$
- Slope is negative $x<3$ and slope is positive $x>3$
- $f(0)=-2$
a) Sketch the function.
b) Provide a possible equation for f.

5) Find the diameter of a circle with an arc length of 32 cm and a subtended angle of 72°.
6) Express as a single sine or cosine function.
$\cos ^{2}\left(\frac{3 \theta}{2}\right)-\sin ^{2}\left(\frac{3 \theta}{2}\right)$
7) Write as a single trigonometric function then evaluate exactly:
$\cos \frac{\pi}{7} \cos \frac{4 \pi}{21}-\sin \frac{\pi}{7} \sin \frac{4 \pi}{21}$.
8) Express $\sin \frac{38 \pi}{6}$ in terms of a cosine function of an acute angle. Do not evaluate.
9) If $\tan \theta=\frac{-1}{\sqrt{3}},-\pi \leq \theta \leq-\frac{\pi}{2}$
find the exact value of θ.
10) State the domain for the function:

$$
y=\log _{2}(10-3 x)
$$

11) Solve for x (to 3 decimal places)
a) $x=\log _{6} 92^{4}$
b) $\log _{x} 44=1.572$
12) Write as a single logarithm: $3 \log _{2} m+\log _{2} m n-\frac{1}{2} \log _{2} n$

Part C - Full Solution: 50 marks

1) Factor completely $P(x)=4 x^{3}+12 x^{2}+5 x-6$.
2) Solve.
a) $\frac{x^{2}-x-8}{x-1} \geq 3$ using an interval chart.
b) $\log _{2}(x-7)+3=\log _{2}(2 x)$
c) $4^{2-3 x}=5^{8-x}$
3) Prove $\frac{1+\sec x}{\sec x}=\frac{\sin ^{2} x}{1-\cos x}$
4) Given the function $y=-3 \sin [\pi x-4]+2$, state the following characteristics:
a) Period \qquad b) Range \qquad
c) phase shift \qquad
d) Axis of curve \qquad
5) Analyse the function $g(x)=\frac{(4 x-1)(x+3)(2 x-1)}{x(x+3)(x+2)}$ using the characteristics listed below.

x-intercept(s): y-intercept(s): hole(s):	Equation of Asymptotes: Vertical: Horizontal: Slant:
End Behaviour:	Behaviour near asymptotes:

Part D - Application - 23 marks

6) Polluted water flows into a pond. The concentration of pollutant c, in the pond at time t minutes is modelled by the equation $c(t)=9-\frac{90000}{10000+3 t^{\prime}}$, where c is measured in kilograms per cubic metre.
a) When will the concentration of pollutant in the pond reach $6 \mathrm{~kg} / \mathrm{m}^{3}$?
b) What will happen to the concentration of pollutant over time? Justify your reasoning.
7) An object is suspended from a spring which oscillates up and down. The distance from the highest point to the lowest point is 25 m . The object takes 5 seconds to complete 4 cycles. The object is initially stretched to its lowest point and then released.
a) Write an equation that describes the distance (d), in metres from the mean position with respect to the time, t, in seconds.
b) When will this object be 3.5 m above the mean position for the first time?
8) The volume of air in the lungs during normal breathing is a sinusoidal function of time given by: $V=300 \sin \frac{\pi}{2} t+2500$, where t is the time in seconds and V is in mL .
a) Find the average rate of change of the volume during the first 1.5 seconds.
b) Estimate the instantaneous rate of change of volume at $t=2$ seconds. What does this tell you about the breathing at this time?
c) Describe how the original graph would change if :
(i) the person breathes more rapidly
(ii) the person takes bigger breaths.
9) A thermocouple which is used to measure very high temperatures is placed on the element of a stove. The temperature of the element, in T degrees Celsius, can be modelled by the equation:
$T=150 \log 4 t$, where t is in the time in seconds after the element is turned on
a) What is the temperature after 30 seconds?
b) How long will it take for the temperature to reach $375^{\circ} \mathrm{C}$?
