Part A: Multiple Choice: 10 marks

Identify the letter of the choice that best completes the statement.

- **1)** When $f(x) = 2x^3 11x^3 4x + a$ is divided by x + 2, the remainder is -4. What is the value of *a*? **a)** 48 **b)** 56 **c)** -48 **d)** -56
- 2) Which of the following intervals represent the solution to the inequality
- 3) Which statement is false?
 - a) The real roots of the equation $x^4 6x^2 27 = 0$ are the x-intercepts of the graph of the polynomial $f(x) = x^4 6x^2 27$.
 - **b)** The number of zeroes the graph of $f(x) = x^3 + 3x^2 x 3$ has is 3.
 - c) The graph of a linear relation has a maximum of one x-intercept, and the graph of a quadratic function has a maximum of two x-intercepts.
 - **d)** If the graph of a particular polynomial function has exactly two x-intercepts, then the function must be quadratic.
- 4) $y = x^3$ is stretched horizontally by a factor of 2, and then translated horizontally 3 units to the right. What is the equation of the resulting graph?

a)
$$y = (2(x+3))^3$$

b) $y = \left(\frac{1}{2}(x-3)\right)^3$
c) $y = \left(\frac{1}{2}x\right)^3 - 3$
d) $y = (2x-3)^3$

5) The real root(s) of the function $f(x) = \frac{x^2 - 1}{x - 1}$ are: a) 1 and -1 b) only 1 c) only - 1 d) None of these

6) The vertical asymptotes for $m(x) = \frac{-4(x-3)}{3x^2 - 14x - 24}$ are:

a)
$$x = 3, -\frac{4}{3}, 6$$
 b) $x = -\frac{4}{3}, -6$ c) $x = -6, 3$ d) $x = -\frac{4}{3}, 6$

7) The rational function $q(x) = \frac{x^2 - 6x + 11}{x - 2}$ has an oblique asymptote at:

a)
$$q(x) = x - 4$$

b) $q(x) = x + 4$
c) $q(x) = x - 8$
d) $q(x) = x + 8$

Part B - Short Answer: 28 marks

- 1) Consider the function $h(x) = 4x^4(2x-1)^2(2-x)$: a) Determine the degree.
 - b) Determine its end behaviour.
 - c) Determine the zeroes .

- 2) Sketch a quartic function with:
 - Zeroes -2 (order 2), 3 (order 2)
 - $x \to \pm \infty, y \to \infty$
- **3)** Given the graph of f below:
 - a) Determine an equation in factored form passing through the point (-3,8).

- 4) Consider the following characteristics of a reciprocal quadratic function:
 - $y \in (0, -\infty)$
 - Vertical asymptotes x = 3
 - Slope is negative x < 3 and slope is positive x > 3
 - f(0) = -2
 - a) Sketch the function.
 - **b)** Provide a possible equation for *f*.
- 5) Find the diameter of a circle with an arc length of 32 cm and a subtended angle of 72°.
- 6) Express as a single sine or cosine function.

$$\cos^2\left(\frac{3\theta}{2}\right) - \sin^2\left(\frac{3\theta}{2}\right)$$

7) Write as a single trigonometric function then evaluate exactly:

$$\cos\frac{\pi}{7}\cos\frac{4\pi}{21} - \sin\frac{\pi}{7}\sin\frac{4\pi}{21}.$$

- 8) Express $\sin \frac{38\pi}{6}$ in terms of a cosine function of an acute angle. Do not evaluate.
- 9) If $\tan \theta = \frac{-1}{\sqrt{3}}$, $-\pi \le \theta \le -\frac{\pi}{2}$

find the exact value of θ .

10) State the domain for the function:

$$y = \log_2(10 - 3x)$$

- **11)** Solve for x (to 3 decimal places)
 - a) $x = \log_6 92^4$
 - **b)** $\log_x 44 = 1.572$

12) Write as a single logarithm: $3\log_2 m + \log_2 mn - \frac{1}{2}\log_2 n$

Part C - Full Solution: 50 marks

- 1) Factor completely $P(x) = 4x^3 + 12x^2 + 5x 6$.
- 2) Solve.
 - a) $\frac{x^2 x 8}{x 1} \ge 3$ using an interval chart.
 - **b)** $\log_2(x-7)+3 = \log_2(2x)$
 - c) $4^{2-3x} = 5^{8-x}$
- 3) Prove $\frac{1 + \sec x}{\sec x} = \frac{\sin^2 x}{1 \cos x}$
- **4)** Given the function $y = -3\sin[\pi x 4] + 2$, state the following characteristics:
 - a) Period ______
 b) Range ______

 c) phase shift ______
 d) Axis of curve ______
- 5) Analyse the function $g(x) = \frac{(4x-1)(x+3)(2x-1)}{x(x+3)(x+2)}$ using the characteristics listed below.

x-intercept(s):	Equation of Asymptotes:
y-intercept(s):	Vertical:
hole(s):	Horizontal:
	Slant:
End Behaviour:	Behaviour near asymptotes:

Part D – Application – 23 marks

- 6) Polluted water flows into a pond. The concentration of pollutant *c*, in the pond at time *t* minutes is modelled by the equation $c(t) = 9 \frac{90\ 000}{10\ 000+3t}$, where *c* is measured in kilograms per cubic metre.
 - a) When will the concentration of pollutant in the pond reach $6 kg/m^3$?
 - **b)** What will happen to the concentration of pollutant over time? Justify your reasoning.
- 7) An object is suspended from a spring which oscillates up and down. The distance from the highest point to the lowest point is 25 m. The object takes 5 seconds to complete 4 cycles. The object is initially stretched to its lowest point and then released.
 - **a)** Write an equation that describes the distance (d), in metres from the mean position with respect to the time, t, in seconds.
 - b) When will this object be 3.5 m above the mean position for the first time?
- 8) The volume of air in the lungs during normal breathing is a sinusoidal function of time given by:

 $V = 300 \sin \frac{\pi}{2} t + 2500$, where t is the time in seconds and V is in mL.

- a) Find the average rate of change of the volume during the first 1.5 seconds.
- **b)** Estimate the instantaneous rate of change of volume at t = 2 seconds. What does this tell you about the breathing at this time?
- c) Describe how the original graph would change if :
 - (i) the person breathes more rapidly (ii) the person takes bigger breaths.
- **9)** A thermocouple which is used to measure very high temperatures is placed on the element of a stove. The temperature of the element , in T degrees Celsius, can be modelled by the equation:

 $T = 150 \log 4t$, where t is in the time in seconds after the element is turned on

- a) What is the temperature after 30 seconds?
- **b)** How long will it take for the temperature to reach $375^{\circ}C$?