MHF4U: Review Package \# 3 (Questions from old tests mixed together).

Part A: Short Answers

1) Sketch the function $y=-(x-2)(x+3)^{2}$.
2) Determine the horizontal asymptote for $f(x)=\frac{-5 x^{4}}{x^{3}-9 x}$
3) Factor completely. $5 x^{3}+320 y^{6}$.
4) Determine the remainder when $f(x)=3 x^{3}-5 x^{2}+x+12$ is divided by $(x+2)$ without using long or synthetic division.
5) Evaluate $\log _{\sqrt{3}} 243$ without the use of a calculator.
6) Express as a single logarithm: $\log _{7} x-2 \log _{7} z-\frac{3}{4} \log _{7} y$
7) Determine the coordinates of the hole for $g(x)=\frac{x^{3}-8}{x^{2}-4}$.
8) Convert 126° to exact radian measure.
9) Reduce $\sin \frac{11 \pi}{8}$ to the first quadrant using a co-related identity.
10) Simplify to a single trigonometric function $\frac{\tan 4 x-\tan 5 y}{1-\tan 4 x \tan 5 y}$
11) State the domain of $f(x)=2 \log _{3}(x+4)-1$.
12) State the range of $h(x)=-3\left(4^{x-3}\right)-5$.
13) State the equation of the oblique asymptote of $y=\frac{4 x^{6}-7 x^{3}-2}{x^{5}-2 x^{2}}$.
14) State the range of $y=4 \sec \left(2 x-\frac{\pi}{5}\right)+1$.
15) Find the equation of a cosecant function that has a local maximum at $y=5$, a local minimum at $y=-1$ and vertical asymptotes given by $\theta=\frac{\pi}{4}+\frac{\pi}{7} n, n \in I$.
16) Write an equation for a function that is the reciprocal of a quadratic and that has the following properties:

- Horizontal asymptote $y=0$
- Vertical asymptote $x=6$ and $x=-2$
- $y>0$ on the intervals $(-\infty,-2)$ and $(6, \infty)$
- $f(0)=-\frac{1}{4}$

Part B: Full Solutions

1) Solve for $x, x \in R$ and graph the solution set on a real number line.
a) $3 x^{3}+4 x^{2}-5 x-2<0$
b) $\frac{5}{2 x+3} \geq 4$
2) Solve for $x, x \in R$
a) $\log _{2}\left(x^{2}-6 x\right)-\log (1-x)=3$
b) $36^{3 x-1}=6^{2 x+5}$
c) $4^{x}+15\left(4^{-x}\right)=8$
d) $6^{x+3}=7^{2 x-1}$
e) $3\left(6^{2-x}\right)=9175$
f) $\sin 2 x+\sqrt{2} \sin x=0, x \in[-\pi, 2 \pi]$
3) Graph the function $f(x)=\frac{5-x}{x^{2}-16}$, by first determining the intercepts, equations of asymptotes and behavior of the function around all asymptotes.
4) Express as a single logarithm, then evaluate $\log _{4} \sqrt{40}+\log _{4} \sqrt{48}-\log _{4} \sqrt{15}$
5) \quad Graph $y=\log _{2}(4-x)^{-2}$.
6) Determine the exact average rate of change of the function $y=2 \sin \left(x-\frac{\pi}{6}\right)+1$ on the interval $\frac{\pi}{2} \leq x \leq 3 \pi$.
7) Using identities, evaluate exactly
a) $\sin \frac{9 \pi}{8}$
b) $\cos \frac{11}{12} \pi$
8) Prove $\sec x=\frac{2[\cos x \sin 2 x-\sin x \cos 2 x]}{\sin 2 x}$
9) The sound intensity of a soft whisper is about $\frac{1}{200,000}$ of the sound intensity of a shout. What is the decibel level of a whisper if a shout has a loudness level of about 85 dB ?
10) Jackson wants to invest his considerable chess prize money in a premium savings account earning 2.25% compounded semi-annually. How long will it take his initial deposit (P) to quadruple in value? (Express answer correct to 1 decimal place)
11) The tides at Cape Capstan, N.B, change depth of the water in the harbour. On one day in October, the tides have a high point of approximately 10 m at $2 \mathrm{p} . \mathrm{m}$. and a low point of approximately 1.2 m at $8: 15 \mathrm{p} . \mathrm{m}$. A particular sailboat has a draft of 2 m . This means it can only move in water that is at least 2 m deep. The captain of the sailboat plans to exit the harbour at 6 p.m. Create a sinusoidal function to model the problem, and use it to determine whether the sailboat can exit the harbour safely at 6 p.m. Assume $t=0$ is midnight.
