1. Complete the table.

Degree	Radian Measure In terms of π	Radian Measure (round to nearest hundredth)
450°	$\frac{5 \pi}{2}$	7.85 rad
108°	$\frac{3 \pi}{5}$	1.88 rad
134.1°	$\frac{149}{200} \pi$	2.34 radians

2.

For $\theta=-\frac{13}{5} \pi$, find the coterminal angle equivalent to θ in radian measure.	Given $\sec \theta=-1.59$, and $\tan \theta>0$, find the standard angle and related angle, where $\theta=[0,2]$	Given $\theta=\frac{-4 \pi}{7}$, state the principal angle in degrees.
$\theta=\frac{-13 \pi}{5}+2 \pi=\frac{-3 \pi}{5}$ OR keep adding 2π to get angle	$\begin{array}{cc} \cos \theta=\frac{-1}{1.59} & \text { but } \tan \theta 70 \\ \cos \theta^{\circ}=0.6289 \quad \alpha=0.89 \mathrm{rad} \\ \theta=2.25 \mathrm{rad} & \therefore \theta=\pi+099 \\ \text { (this is } \operatorname{tin} 8 \text { oudd } 2 \text {) } & =4.03 \mathrm{rad} \end{array}$	$\begin{aligned} & \theta=\frac{-4 \pi}{7}+2 \pi=\frac{10 \pi}{7} \\ & \therefore \theta=257.1^{\circ} \end{aligned}$

3. Express each as a function of its co-related acute angle and evaluate using exact form.
(a) $\sin \left(\frac{4 \pi}{3}\right)$
$=\sin \left(\frac{3 \pi}{2} \cdot-\pi / 6\right)$
$=-\cos \pi / 6$
$=-\frac{\sqrt{3}}{2}$

(b) $\cos \left(-135^{\circ}\right)$
$=\cos \left(135^{\circ}\right) \quad \sin c e \cos (-\theta)=\cos \theta$
$=-\cos \left(90^{\circ}+45\right)$
$=-\sin 45^{\circ}$
$=\frac{-\sqrt{2}}{2}$

4. Evaluate each of the following using related angles and the exact values of the special angles. Simplify and rationalize where appropriate.
(a) $\sin \frac{5 \pi}{4}-\cos \frac{11 \pi}{6} \csc \frac{\pi}{3}$
(b) $\frac{\sec \frac{\pi}{4} \cos \frac{2 \pi}{3}}{\pi}$
$\tan \frac{\pi}{6} \csc \frac{3 \pi}{4}$
$=-\sin \frac{\pi}{4}-\frac{\left(\cos \frac{\pi}{6}\right)}{\sin \pi / 3}$
$=-\frac{\sqrt{2}}{2}-\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}$
$=\frac{-\sqrt{2}}{2}-1$

5. A wheel turns with an angular velocity of $15 \mathrm{rad} / \mathrm{s}$.
a. What is the rotational frequency in revolutions per minute of this wheel?
$u r=\frac{15 \mathrm{rad}}{1 \mathrm{sec}}=\frac{15 \mathrm{rad}}{1 \mathrm{sec}} \times \frac{60 \mathrm{sec}}{2 \pi \mathrm{rad}}=143.2$ rotations $/ \mathrm{min}$
b. How far will the wheel roll in 4 minutes if the radius of the wheel is 12 cm ?

$$
\theta=\frac{a}{r}
$$

$\Rightarrow a=r \theta$

$$
\begin{aligned}
& =12\left(\frac{15 \mathrm{rad}}{1 \mathrm{sec}}\right)(60 \mathrm{sec}) \times 4 \\
& =43200 \mathrm{~cm} \text { OR } \\
& =432 \mathrm{~m}
\end{aligned}
$$

The wheel will travel 43200 cm or 432 m in 4 minutes.
6. A bicycle wheel has a diameter of 68 cm . If Andrew cycles $28 \mathrm{~km} / \mathrm{h}$ to school, through what radian angle will his wheel turn in 1 sec ?

$$
\begin{array}{rlrl}
r=34 \mathrm{~cm} & v=u r \\
v=28 \mathrm{~km} / \mathrm{h} & & \Rightarrow u r=\frac{v}{r} \\
v=\frac{28 \times 100000 \mathrm{~cm}}{3600 \mathrm{sec}} & & =\frac{7000 \mathrm{ch}}{9 \mathrm{sec}} \\
v=\frac{7000 \mathrm{~cm}}{4 \mathrm{sec}} & & \frac{34 \mathrm{ch}}{}
\end{array}
$$

The angle at which the wheel
rotates is 22.88 rad.
7. A satellite makes one complete revolution of the earth in 110 min . If the satellite is situated 300 km above the equator, find the satellite's speed in kilometer per second. Assume the earth's equatorial radius is 6400 km .

$$
\begin{aligned}
r & =6700 \mathrm{~km} \\
\theta & =2 \pi \mathrm{rad} \\
t & =110 \mathrm{~min} \\
& =6600 \mathrm{sec}
\end{aligned}
$$

$$
\begin{array}{ll}
r=6700 \mathrm{~km} & v=u \cdot r \\
\theta=2 \pi \mathrm{rad} & =\frac{\theta}{t}-r \\
t=110 \mathrm{~min} &
\end{array}
$$

$$
\begin{aligned}
V & =w \cdot r \\
& =\frac{\theta}{t}-r \\
& =\frac{2 \pi r a d}{6600 \mathrm{sec}} \cdot 6700 \mathrm{~km} \\
& =6.37 \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Satellite is traveling $6.37 \mathrm{~km} / \mathrm{s}$ to make 1 revolution around the earth.

