

Triganametry Lessan 10
 Part One - Iraphically Salving Equatians

Solving trigonometric equations graphically:

When a question asks you to solve a system of trigonometric equations, they are looking for the values of θ that make both equations true. There are two ways you can solve for θ : graphically in your TI-83, and algebraically. Part I will show the graphing method, and Parts II \& III will focus on algebraic methods.

Example 1: Solve $\cos \theta=\frac{1}{2}$ and state the general solutions:

> In your TI-83, graph each equation in degree mode.

Now use $2^{\text {nd }} \rightarrow$ Trace \rightarrow Intersect to find the points of intersection. They occur at $60^{\circ} \& 300^{\circ}$

If you extend the window, you will see that the intersection points are in the same relative places, one period later.

The first general solution is:
$60^{\circ} \pm \mathrm{n}\left(360^{\circ}\right)$ or $\frac{\pi}{3} \pm n(2 \pi)$
and the second is:
$300^{\circ} \pm \mathrm{n}\left(360^{\circ}\right) \quad$ or $\frac{5 \pi}{3} \pm n(2 \pi)$

Example 2: Solve $\cos 2 \theta=\frac{\sqrt{2}}{2}$ and state the general solutions:

Graph both equations in your TI-83, then solve for the first two intersection points.

The first two intersection points are at 22.5° and 157.5°. As you can see in the graph, the solutions repeat themselves every period.

Since the b-value is 2 , the period is 180°, or π. The first general solution is:
$22.5^{\circ} \pm n\left(180^{\circ}\right)$ or $\frac{\pi}{8} \pm n \pi$
And the second is:
$157.5^{\circ} \pm n\left(180^{\circ}\right)$ or $\frac{7 \pi}{8} \pm n \pi$

Iriganametry Tessan 眶
 Part Ome - Iraphically Goling Equations

Example 3: Graphically find the general solutions for $2 \sin \theta-\sqrt{3}=0$

Graph the two equations in your TI-83 and solve by finding the points of intersection.
$60^{\circ} \pm \mathrm{n}\left(360^{\circ}\right)$ or $\frac{\pi}{3} \pm n(2 \pi)$
$120^{\circ} \pm \mathrm{n}\left(360^{\circ}\right)$ or $\frac{2 \pi}{3} \pm n(2 \pi)$
(In this case, another method would be to find the x-intercepts using $2^{\text {nd }} \rightarrow$ Trace \rightarrow Zero)

Note that even if you manipulate the equation you can still solve by graphing:

If you re-arrange the equation to $2 \sin \theta=\sqrt{3}$ by taking $\sqrt{3}$ to the other side, we get:

Solving, we still have the same answers of $60^{\circ} \& 120^{\circ}$

If we manipulate the equation again by dividing both sides by 2 , we get: $\sin \theta=\frac{\sqrt{3}}{2}$. Solving this:

Once again, we still get the same answers of $60^{\circ} \& 120^{\circ}$

Jriganametry Lessan 10

Part One - Eraphically Soluing Equatians
Find the general solution IIn degrees \& radian fractions) for each of the following equations:

1) $\sin 3 x=\frac{\sqrt{3}}{2}$
2) $\cos ^{2} x=1$
3) $\sin 2 x=0$
4) $\sin 4 x=-\frac{1}{2}$
5) $\tan 2 x=\sqrt{3}$
6) $\sin ^{2} x-0.25=0$
7) $\tan x+\sqrt{3}=0$
8) $\sin \frac{1}{2} x=-\frac{\sqrt{3}}{2}$

Jriganametry Lessan 10

Part Ome - Eraphically Saluing Equatians

$$
\begin{aligned}
& \text { 1) } 20^{\circ} \pm n\left(120^{\circ}\right) \quad \frac{\pi}{9} \pm n\left(\frac{2 \pi}{3}\right) \\
& \text { 1) } \\
& 40^{\circ} \pm n\left(120^{\circ}\right) \quad \frac{2 \pi}{9} \pm n\left(\frac{2 \pi}{3}\right) \\
& \text { 6) } \\
& 30^{\circ} \pm n\left(180^{\circ}\right) \quad \frac{\pi}{6} \pm n \pi \\
& 150^{\circ} \pm n\left(180^{\circ}\right) \quad \frac{5 \pi}{6} \pm n \pi \\
& \text { 2) } \pm n\left(180^{\circ}\right) \quad \pm \mathrm{n} \pi \\
& \text { 7) } 120^{\circ} \pm n\left(180^{\circ}\right) \quad \frac{2 \pi}{3} \pm n \pi \\
& \text { 3) } \pm n\left(90^{\circ}\right) \quad \pm \frac{\mathrm{n} \pi}{2} \\
& \text { 8) } \\
& 480^{\circ} \pm n\left(720^{\circ}\right) \quad \frac{8 \pi}{3} \pm n(4 \pi) \\
& 600^{\circ} \pm n\left(720^{\circ}\right) \quad \frac{10 \pi}{3} \pm n(4 \pi) \\
& \text { 4) } \\
& 52.5^{\circ} \pm n\left(90^{\circ}\right) \quad \frac{7 \pi}{24} \pm \frac{n \pi}{2} \\
& 82.5 \pm n\left(90^{\circ}\right) \quad \frac{11 \pi}{24} \pm \frac{n \pi}{2}
\end{aligned}
$$

5) $30^{\circ} \pm n\left(90^{\circ}\right) \quad \frac{\pi}{6} \pm n\left(\frac{\pi}{2}\right)$

Triganametry Lessam
 Pat Jum - Linear Equations

In this lesson, we will algebraically solve trigonometric equations. There are two main types of equations you will be asked to solve: linear \& nonlinear.
Note that you will still be able to solve all of these in your calculator as you did in the previous lesson, but on the diploma they frequently have written response questions where you need to present an algebraic solution.

Linear Trigonometric Equations:

Example 1: Solve: $4 \cos x+2=0$ in the domain $0 \leq x<2 \pi$
To solve this, we must get cosx by itself on the left side of the equation.
$4 \cos x+2=0$
$4 \cos x=-2$
$\cos x=\frac{-2}{4}$
$\cos x=-\frac{1}{2}$
From the unit circle, we know cos x is $-\frac{1}{2}$ when $x=\frac{2 \pi}{3} \& \frac{4 \pi}{3}$
Example 2: Solve: $2 \sin x \cos x=\sin x$ in the domain $0 \leq x<2 \pi$

We need to bring everything over to the left side, then factor.
$2 \sin x \cos x-\sin x=0$
$\sin x(2 \cos x-1)=0$
Now set each factor on the left side equal to zero:
$\sin x=0$
$2 \cos x-1=0$
$x=0, \pi$

We don't include 2π since the domain is using $a<$ sign,
not $a \leq$ sign.
$2 \cos x=1$
$\cos \mathrm{x}=\frac{1}{2}$
$\mathrm{x}=\frac{\pi}{3}, \frac{5 \pi}{3}$

You may be tempted to divide both sides of the equation by $\sin x$ to cancel it out. Don't do this! In math, you are never allowed to cancel variables on opposite sides of the equation.
Suppose you made this error and canceled $\sin x$. Then you would get

$$
2 \sin x \cos x=\sin x
$$

$$
2 \cos x=1
$$

$$
\cos x=\frac{1}{2}
$$

$$
x=\frac{\pi}{3}, \frac{5 \pi}{3}
$$

As you can see, we lose solutions of $0 \& \pi$ doing it this way

Example 3: Solve: $\frac{\sin x}{4}+\frac{1}{12}=\frac{\sin x}{3}$ in the domain $0 \leq x<2 \pi$
$12\left(\frac{\sin \mathrm{x}}{4}+\frac{1}{12}\right)=12\left(\frac{\sin \mathrm{x}}{3}\right)$
$3 \sin x+1=4 \sin x$
$1=\sin \mathrm{X}$
$\mathrm{x}=\frac{\pi}{2}$

Example 4: Solve sinxsecxcot $x=\sin x s e c x$ in the domain $0 \leq x<2 \pi$
$\sin x \sec x \cot x-\sin x \sec x=0$
$\sin x \sec x(\cot x-1)=0$
Bring all terms to one
side so you can factor.

$$
\begin{array}{llll}
\sin x=0 & \sec x=0 & \cot x-1=0 & \text { The combined solution set is: } \\
x=0, \pi & \frac{1}{\cos x}=0 & \cot x=1 & 0, \frac{\pi}{4}, \pi, \frac{5 \pi}{4} \\
& x=\text { No solutions } & x=\frac{\pi}{4}, \frac{5 \pi}{4} &
\end{array}
$$

Example 5: Solve $3 \sin x=2$ in the domain $0 \leq x<2 \pi$
$3 \sin x=2 \quad$ Since $\frac{2}{3}$ is not on the unit circle, we are forced to do this
$\sin x=\frac{2}{3}$ equation graphically in the calculator.
$41.8^{\circ}=0.73 \mathrm{rad}$
$138.2^{\circ}=2.41 \mathrm{rad}$

Trigamametry Lesson 1
 Part Jun - Linear Equations

Solve each of the following in the domain $0 \leq x<2 \pi$

1) $\sin x-\frac{1}{2}=0$
2) $2 \cos x-\sqrt{3}=0$
3) $4 \sin x+3=3 \sin x+2$
4) $2 \sin x \cos x=\cos x$
5) $2 \cos x+1=2$
6) $\sin x \cos x \tan x+\sin x \cos x=0$
7) $2 \cos x\left(\cos x+\frac{1}{2}\right)=0$

Triganametry Tessan 慨

Part Jua - Linear Equations

Trigamametry Lessam 10
Part Jwa - Linear Equations

1) $x=\frac{\pi}{6}, \frac{5 \pi}{6}$
2) $x=\frac{\pi}{6}, \frac{11 \pi}{6}$
3) $x=\frac{3 \pi}{2}$
$2 \sin x \cos x-\cos x=0$
4) $\cos x(2 \sin x-1)=0$
$x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
$\tan x=1$
5) $x=\frac{\pi}{4}, \frac{5 \pi}{4}$
6)

$\cos x=\frac{1}{2}$
$x=\frac{\pi}{3}, \frac{5 \pi}{3}$
$\sin x \cos x(\tan x+1)=0$
7) $x=0, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{3 \pi}{2}, \frac{7 \pi}{4}$
8) $x=\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{3 \pi}{2}$
9) $x=\frac{\pi}{4}, \frac{\pi}{2}, \pi, \frac{5 \pi}{4}$

$$
\cot x(\csc x+1)=0
$$

10) $x=\frac{\pi}{2}, \frac{3 \pi}{2}$

$$
\cos x(\tan x+1)=0
$$

11) $x=\frac{\pi}{2}, \frac{3 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}$
12) $x=0, \frac{\pi}{4}, \frac{5 \pi}{4}$
13) $\sec x(\cos x+1)=0$
$x=\pi$
$3 \sin x=2 \sin x$
14)

$3 \sin x-2 \sin x=0$
$\sin x=0$
$x=0, \pi$
$6\left(\frac{\tan x}{2}-\frac{\tan x}{3}\right)=6\left(\frac{-1}{6}\right)$
15)
$3 \tan x-2 \tan x=-1$
$\tan x=-1$
$x=\frac{3 \pi}{4}, \frac{7 \pi}{4}$

16)

$15\left(\frac{\csc x}{5}+\frac{\csc x}{3}\right)=15\left(\frac{16}{15}\right)$
$3 \csc x+5 \csc x=16$
$8 \csc x=16$
$\csc x=2$
$\sin x=\frac{1}{2}$
$x=\frac{\pi}{6}, \frac{5 \pi}{6}$

Pat Shee - Thanlinear Equations

Quadratic Trigonometric Equations:

Example 1: Solve $4 \sin ^{2} x-3=0$ in the domain $0 \leq x<2 \pi$
$4 \sin ^{2} x=3$
$\sin ^{2} x=\frac{3}{4}$
$\sqrt{\sin ^{2} x}=\sqrt{\frac{3}{4}}$
$\sin x= \pm \frac{\sqrt{3}}{2}$
$\mathrm{x}=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
Example 2: Solve $\cos ^{2} x-\cos x=0$ in the domain $0 \leq x<2 \pi$

$$
\begin{array}{ll}
\cos ^{2} \mathrm{x}-\cos \mathrm{x}=0 & \\
\cos \mathrm{x}(\cos \mathrm{x}-1)=0 & \\
\cos \mathrm{x}=0 & \cos \mathrm{x}-1=0 \\
\mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{2} & \cos \mathrm{x}=1 \\
\mathrm{x}=0
\end{array}
$$

The complete solution is: $\mathrm{x}=0, \frac{\pi}{2}, \frac{3 \pi}{2}$

Example 3: Solve $2 \cos ^{2} x=3 \cos x-1$ in the domain $0 \leq x<2 \pi$
$2 \cos ^{2} x-3 \cos x+1=0$
$(2 \cos x-1)(\cos x-1)=0$

$$
\begin{array}{ll}
2 \cos x-1=0 & \\
2 \cos x=1 & \cos x-1=0 \\
\cos x=\frac{1}{2} & \cos x=1 \\
x=\frac{\pi}{3}, \frac{5 \pi}{3} &
\end{array}
$$

The complete solution is: $\mathrm{x}=0, \frac{\pi}{3}, \frac{5 \pi}{3}$

Part Thrree - Monlinear Equations

Example 4: Solve $\sin ^{3} x-5 \sin ^{2} x+6 \sin x=0$ in the domain $0 \leq x<2 \pi$ $\sin x\left(\sin ^{2} x-5 \sin x+6\right)=0$ $\sin x(\sin x-2)(\sin x-3)=0$

$$
\begin{array}{lll}
\sin \mathrm{x}=0 & \sin \mathrm{x}-2=0 & \sin \mathrm{x}-3=0 \\
\mathrm{x}=\frac{\pi}{2}, \frac{3 \pi}{2} & \sin \mathrm{x}=2 & \sin \mathrm{x}=3 \\
\mathrm{x}=\text { no solution } & \mathrm{x}=\text { no solution }
\end{array}
$$

Example 5: Solve $\tan ^{8} x-\tan ^{4} x=0$ in the domain $0 \leq x<2 \pi$, and state the general solution
$\tan ^{4} \mathrm{x}\left(\tan ^{4} \mathrm{x}-1\right)=0$
$\tan ^{4} \mathrm{x}\left(\tan ^{2} \mathrm{x}+1\right)\left(\tan ^{2} \mathrm{x}-1\right)=0$
Watch out for difference of squares!
$\tan ^{4} \mathrm{x}\left(\tan ^{2} \mathrm{x}+1\right)(\tan \mathrm{x}+1)(\tan \mathrm{x}-1)=0$

$$
\begin{aligned}
& \tan ^{4} x=0 \\
& \sqrt[4]{\tan ^{4} x}=\sqrt[4]{0} \\
& \tan x=0 \\
& x=0, \pi
\end{aligned}
$$

The complete solution set for $0 \leq x<2 \pi$ is: $x=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

The general solution is: $\mathrm{x}= \pm \mathrm{n} \pi$ and $\mathrm{x}=\frac{\pi}{4} \pm \mathrm{n} \frac{\pi}{2}$
These two general solutions will account for all the angles we found.
Example 6: Solve $3 \cot ^{2} x-\cot x-1=0$ in the domain $0 \leq x<2 \pi$
This equation cannot be factored, so graph and find the solutions in radian decimals:
$0.92 \mathrm{rad}, 1.98 \mathrm{rad}, 4.06 \mathrm{rad}, 5.12 \mathrm{rad}$

Graph in your TI-83 as:
$\frac{3}{(\tan (\mathrm{x}))^{2}}-\frac{1}{\tan (\mathrm{x})}-1$
Then use $2^{\text {nd }} \rightarrow$ Trace \rightarrow Zero to find x -intercepts.

Trigonometry Lesson

Pat Thee - Thanlinear Equations

Solve each of the following in the domain $0 \leq x<2 \pi$

1) $\cos ^{2} x=\frac{3}{4}$
2) $6 \cos ^{2} x-3 \cos x-3=0$
3) $\sin ^{2} x-\frac{1}{4}=0$
4) $2 \sin ^{2} x-3 \sin x+1=0$
5) $3 \tan ^{2} x=3$
6) $4 \cos ^{2} x+2 \cos x-2=0$
7) $4 \sin ^{2} x-3=0$
8) $2 \cos ^{3} x+\cos ^{2} x-\cos x=0$
9) $2 \sin ^{2} x-\sin x-1=0$
10) $\tan ^{4} x-\tan ^{2} x=0$
11) $2 \sin ^{2} x=1-\sin x$
12) $\cos ^{8} x-\cos ^{4} x=0$

Triganametry Lessan

Part Jthree - Monlimear Equations

ANSWERS:

1) $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
$2\left(2 \cos ^{2} x+\cos x-1\right)=0$
2) $2(2 \cos x-1)(\cos x+1)=0$
$x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$
$\cos x\left(2 \cos ^{2} x+\cos x-1\right)=0$
3) $\cos x(2 \cos x-1)(\cos x+1)=0$
$x=\frac{\pi}{3}, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, \frac{5 \pi}{3}$
$\tan ^{2} x\left(\tan ^{2} x-1\right)=0$
4) $\tan ^{2} x(\tan x+1)(\tan x-1)=0$
$x=0, \frac{\pi}{4}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

$$
\begin{aligned}
& \cos ^{4} x\left(\cos ^{4} x-1\right)=0 \\
& \cos ^{4} x\left(\cos ^{2} x+1\right)\left(\cos ^{2} x-1\right)=0
\end{aligned}
$$

12) $\cos ^{4} x\left(\cos ^{2} x+1\right)(\cos x+1)(\cos x-1)=0$
$x=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$

$$
(2 \sin x-1)(\sin x-1)=0
$$

8) $x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$

$$
3\left(2 \cos ^{2} x-\cos x-1\right)=0
$$

7) $3(2 \cos x+1)(\cos x-1)=0$

$$
x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}
$$

$$
x=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}
$$

 Part Four-Algebraically Saluing Multiple Angles

Algebraically Solving Double, Triple, and Half Angles:

While technology can be used to solve equations involving double \& triple angles, it is advantageous to understand the algebraic process involved with these question types.

Example 1: Solve $\sin 2 \theta=\frac{\sqrt{3}}{2}$ algebraically over the interval $0 \leq x \leq 2 \pi$.
To solve this equation algebraically, you need to perform the following steps:
Step 1) Start by solving the equation $\sin x=\frac{\sqrt{3}}{2}$. We can do this easily using the unit circle. The answer to this equation is $x=\frac{\pi}{3}$ and $\frac{2 \pi}{3}$.

Step 2) Add 2π to each of the angles we found.

$$
\begin{array}{ll}
\frac{\pi}{3}+2 \pi=\frac{\pi}{3}+\frac{6 \pi}{3}=\frac{7 \pi}{3} & \begin{array}{l}
\text { Don't forget that adding fractions } \\
\text { requires a common denominator. }
\end{array} \\
\frac{2 \pi}{3}+2 \pi=\frac{2 \pi}{3}+\frac{6 \pi}{3}=\frac{8 \pi}{3} &
\end{array}
$$

Step 3) Finally, take all your solutions $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{7 \pi}{3}, \frac{8 \pi}{3}$ and divide by 2 . (or multiply by $1 / 2$) The answer is $\frac{\pi}{6}, \frac{\pi}{3}, \frac{7 \pi}{6}, \frac{4 \pi}{3}$

The general solution is:

$$
x=\left\{\begin{array}{ll}
\frac{\pi}{6}+k \pi, & k \in I \\
\frac{\pi}{3}+k \pi, & k \in I
\end{array}\right\}
$$

The period of $\sin 2 \theta($ which is $\pi)$ goes here.

You can verify the results by graphing and checking the x-coordinates of the points of intersection.

PURE MATH 30: EXPLAINED!

Jrimanametw Feseson 10

Part Four - Algebraically Saluing Multiple Angles
Example 2: Solve $\cos 3 \theta=\frac{\sqrt{2}}{2}$ for the domain $0 \leq \theta \leq 2 \pi$
Step 1) Start by solving the equation $\cos x=\frac{\sqrt{2}}{2}$. We can do this using the unit circle. The answer to this equation is $x=\frac{\pi}{4}$ and $\frac{7 \pi}{4}$.

Step 2) Add 2π to each of the angles we found.

$$
\begin{aligned}
& \frac{\pi}{4}+2 \pi=\frac{\pi}{4}+\frac{8 \pi}{4}=\frac{9 \pi}{4} \\
& \frac{7 \pi}{4}+2 \pi=\frac{7 \pi}{4}+\frac{8 \pi}{4}=\frac{15 \pi}{4}
\end{aligned}
$$

Step 3) Add 2π to each of the angles we found in Step 2.

$$
\begin{aligned}
& \frac{9 \pi}{4}+2 \pi=\frac{9 \pi}{4}+\frac{8 \pi}{4}=\frac{17 \pi}{4} \\
& \frac{15 \pi}{4}+2 \pi=\frac{15 \pi}{4}+\frac{8 \pi}{4}=\frac{23 \pi}{4}
\end{aligned}
$$

Step 4) Finally, take all your solutions $\frac{\pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4}, \frac{15 \pi}{4}, \frac{17 \pi}{4}, \frac{23 \pi}{4}$ and divide by 3 . (Or multiply by $1 / 3$) The answer is $\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{17 \pi}{12}, \frac{23 \pi}{12}$

The general solution is:

$$
x=\left\{\begin{array}{l}
\frac{\pi}{12}+k \frac{2 \pi}{3}, k \in I \\
\frac{7 \pi}{12}+k \frac{2 \pi}{3},
\end{array}, k \in I\right\}
$$

The period of $\cos 3 \theta$ (which is $2 \pi / 3$) goes here.
You can verify the results by graphing and checking the x-coordinates of the points of intersection.

Eriganametry Lessan 箯 Part Four - Algebraically Solving Multiple Angles

Example 3: Solve $\sin \frac{1}{2} \theta=\frac{\sqrt{3}}{2}$ for the domain $0 \leq \theta \leq 2 \pi$
To solve this equation algebraically, you need to perform the following steps:
Step 1) Start by solving the equation $\sin x=\frac{\sqrt{3}}{2}$. Do this using the unit circle.
The answer to this equation is $x=\frac{\pi}{3}$ and $\frac{2 \pi}{3}$.
Step 2) Divide each angle by $\frac{1}{2}$ (or multiply by 2) to obtain $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$.

The general solution is:

Questions: Algebraically solve for θ over the interval $0 \leq \theta \leq 2 \pi$

1) $\sin 2 \theta=-\frac{\sqrt{3}}{2}$
2) $\sin 2 \theta=-1$
3) $\cos 2 \theta=\frac{\sqrt{3}}{2}$
4) $\cos 3 \theta=\frac{\sqrt{3}}{2}$

Answers:

1) $\theta=\frac{2 \pi}{3}, \frac{5 \pi}{6}, \frac{5 \pi}{3}, \frac{11 \pi}{6}$
2) $\theta=\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}$
3) $\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
4) $\cos 2 \theta=-\frac{1}{2}$
5) $\cos \left(\frac{1}{2} \theta\right)=\frac{\sqrt{2}}{2}$
6) $\theta=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
7) $\theta=\frac{\pi}{18}, \frac{11 \pi}{18}, \frac{13 \pi}{18}, \frac{23 \pi}{18}, \frac{25 \pi}{18}, \frac{35 \pi}{18}$
б) $\theta=\frac{\pi}{2}$
