IMPORTANT DEFINITIONS

Parallel Lines:

that are equal.

Date:

Parallel and Perpendicular Lines

Example 1:

Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

Notation:

If AB is parallel to CD, we write AB || CD.

If AB is perpendicular to CD, we write AB \perp CD.

Recall:

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$

	(x_1, y_1)	(x_2, y_2)	Slope (Steps)	Slope
	A (-4,7)	в (5,8)	$m_{AB} = \frac{8-7}{5-(-4)} = \frac{1}{5+4}$	$\frac{1}{9}$
	C (-4,4)	D (-1,5)		
	e (1,10)	f (2,7)		
	G (7,-4)	н (10,2)		
	I (6,12)	J (9,9)		
D	к (2,1)	L (6,2)		
	M (-3,-3)	N (-2,-1)		
	0 (-1,-4)	P (4,-6)		
	Q (-8,6)	r (-4,10)		
	s (-5,2)	т (0,0)		

From the table above, list any lines that are parallel or perpendicular.

Parallel lines:

Perpendicular lines:

LEARNING GOALS:

I can identify lines that are parallel and lines that are perpendicular.

I can write equations of lines that are either parallel or perpendicular to each other.

Note: Matching arrow symbols indicate that lines are parallel.

Lines that run in the same direction and never cross.

Parallel lines have slopes

Perpendicular Lines:

Lines that intersect at a right (90 degree) angle. <u>Perpendicular lines have</u> <u>slopes that are negative</u> <u>reciprocals</u>.

Notes: A small box at the

intersection indicates a 90 degree angle.

Ex. of a negative reciprocal:

 $\frac{2}{5} \rightarrow -\frac{5}{2}$

Try it Yourself:

- 1. State the equation of the line shown on the Cartesian Plane given: _____
 - a) Draw 3 lines that are parallel to the given line having y-intercepts of -6, 0 and 4.
 - b) Label each of the lines you have drawn with their respective equations.
- 2. State the equation of the line shown on the Cartesian Plane given:
 - a) Draw 3 lines that are perpendicular to the given line having y-intercepts of -5, 0 and 2.
 - b) Label each of the lines you have drawn with their respective equations.
- 3. Beside each of the lines below, give its slope. Hint: "x-int" in the questions below is short for "x-intercept". Work for these questions may be done on scrap paper.
 - a) The line y = -2x 1
 - c) The line with *x*-int 5 and *y*-int 3
 - e) The line with rise of 5 and run of 2
 - g) The line through (-3,1) and (1,5)
 - i) The line with rise of -2 and run 3
 - k) The line through (4,-4) and (2,-7) ____ I) The line with x-int -2 and y-int -1

In the space provided, list all pairs of lines from #3 above which are either parallel or perpendicular.

Parallel lines:	Perpendicular lines:		
Answers:			
$-2; \frac{1}{2}; -\frac{3}{5}; -\frac{3}{5}; \frac{5}{2}; 1; 1; \frac{2}{3}; -\frac{2}{3}; \frac{4}{3}; \frac{3}{2}; -\frac{1}{2}$	c d ; f g ; a \perp b ; i \perp k		

b)	The line through (2,4) and (4,5)	
d)	The line parallel to $y = 7 - \frac{3}{5}x$	
f)	The line $y = x + 1$	
h)	The line $y = \frac{2}{3}x + 5$	
i)	The line $ $ to $y = -\frac{3}{3}r = 1$	

MPM1D

Determine whether or not the following set of points form a right triangle.
Justify your answers with mathematical reasoning. A graph can be used as an aid.

Vertices: A(3,-4) B(-1,-2) C(6,2)

5. Are the lines y=9 and x=-9 parallel or perpendicular? Explain.