Date:

Parallel and Perpendicular Lines

IMPORTANT

DEFINITIONS

Parallel Lines:

Lines that run in the same direction and never cross.
Parallel lines have slopes that are equal.

Note:
Matching arrow symbols indicate that lines are parallel.

Perpendicular Lines:

Lines that intersect at a right (90 degree) angle.
Perpendicular lines have
slopes that are negative reciprocals.

Notes:
A small box at the intersection indicates a 90 degree angle.

Ex. of a negative reciprocal:

$$
\frac{2}{5} \rightarrow-\frac{5}{2}
$$

Example 1:

Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

Notation: If $A B$ is parallel to $C D$, we write $A B|\mid C D$.
If $A B$ is perpendicular to $C D$, we write $A B \perp C D$.

Recall: Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$\left(x_{1}, y_{1}\right)$	$\left(x_{2}, y_{2}\right)$	Slope (Steps)	Slope
A ($-4,7$)	B $(5,8)$	$m_{A B}=\frac{8-7}{5-(-4)}=\frac{1}{5+4}$	$\frac{1}{9}$
C ($-4,4$)	D ($-1,5$)		
E (1,10)	F (2,7)		
G (7,-4)	H (10,2)		
$1(6,12)$	J (9,9)		
K (2,1)	L (6,2$)$		
M ($-3,-3$)	$N(-2,-1)$		
O ($-1,-4$)	P ($4,-6$)		
Q (-8,6)	R ($-4,10$)		
S ($-5,2$)	T (0,0)		

From the table above, list any lines that are parallel or perpendicular.
Parallel lines:
Perpendicular lines:

LEARNING GOALS:

\square I can identify lines that are parallel and lines that are perpendicular.
\square I can write equations of lines that are either parallel or perpendicular to each other.

Try it Yourself:

1. State the equation of the line shown on the Cartesian Plane given: \qquad
a) Draw 3 lines that are parallel to the given line having y-intercepts of $-6,0$ and 4 .
b) Label each of the lines you have drawn with their respective equations.

2. State the equation of the line shown on the Cartesian Plane given: \qquad
a) Draw 3 lines that are perpendicular to the given line having y-intercepts of $-5,0$ and 2 .
b) Label each of the lines you have drawn with their respective equations.
3. Beside each of the lines below, give its slope. Hint: "x-int" in the questions below is short for " x-intercept". Work for
 these questions may be done on scrap paper.
a) The line $y=-2 x-1$ \qquad b) The line through $(2,4)$ and $(4,5)$
c) The line with x-int 5 and y-int 3 \qquad d) The line parallel to $y=7-\frac{3}{5} x$
e) The line with rise of 5 and run of 2 \qquad f) The line $y=x+1$
g) The line through $(-3,1)$ and $(1,5)$ \qquad h) The line $y=\frac{2}{3} x+5$
i) The line with rise of -2 and run 3 \qquad j) The line \perp to $y=-\frac{3}{4} x-1$
k) The line through $(4,-4)$ and $(2,-7)$ \qquad I) The line with x-int -2 and y-int -1
\qquad
\qquad
\qquad

In the space provided, list all pairs of lines from \#3 above which are either parallel or perpendicular.

Parallel lines:
Perpendicular lines:

Answers:

$$
-2 ; \frac{1}{2} ;-\frac{3}{5} ;-\frac{3}{5} ; \frac{5}{2} ; 1 ; 1 ; \frac{2}{3} ;-\frac{2}{3} ; \frac{4}{3} ; \frac{3}{2} ;-\frac{1}{2} \quad \mathrm{c}\|\mathrm{~d} ; \mathrm{f}\| \mathrm{g} ; \mathrm{a} \perp \mathrm{~b} ; \mathrm{i} \perp \mathrm{k}
$$

4. Determine whether or not the following set of points form a right triangle.

Justify your answers with mathematical reasoning. A graph can be used as an aid.

Vertices: $A(3,-4) \quad B(-1,-2) \quad C(6,2)$

5. Are the lines $y=9$ and $x=-9$ parallel or perpendicular? Explain.

