\qquad

The Equation of a Line in Slope y-intercept Form: $y=m x+b$

In the previous unit, we learned that a partial variation represents a linear relation with the form $y=m x+b$. We concluded:

A diagonal line has an equation in the form of $y=m x+b$ where m is the \qquad and b is the \qquad . A line sloping down towards the right has a slope whereas a line sloping up towards the right has a \qquad slope. The value of the slope is the \qquad of x.

Example A: Graph the lines $y=3 x+2$ and $y=-\frac{1}{2} x+5$

Steps on Graphing Lines

1. Plot the y-intercept.
2. Start at the y-intercept and plot two more points using the slope.

Remember:
(i) a negative rise means you travel down from the y-intercept.
(ii) A negative run means you travel left from the y-intercept.

Example B: Consider $y=-\frac{1}{2} x+5$, do the points $(4,3)$ and $(-6,8)$ lie on the line? Justify your answer in more than 1 way.

Example C: Given the graphs below, determine their equations.

Vertical Line:

Key Concepts

2
All horizontal lines always have a slope of \qquad because the rise $=$ \qquad .

The equation $y=m x+b$ becomes

$$
y=b \quad \text { because } m=
$$

Another way of thinking about it is:
All the coordinates on the line have the same y-value and different x values, thus $y=b=y$-intercept.

3
All vertical lines always have an \qquad slope
because the \qquad $=0$. You cannot divide by 0 .

This equation does not follow the form $y=m x+b$.
$\Rightarrow \Rightarrow$ The equation is in the form $x=L$, where L is the number that crosses the x-axis since all the x-values on the line are the same.

Example C: Graph the lines $y=2$ and $x=-1$ on the grids above.
\qquad
Example D: State the equation of each line below.

Example E: Given the value of the slope and y-intercept, determine the equation of the line for each set.

	m	b	Equation	Type of Line
(i)	-2	5		
(ii)	0	7		
(iii)	$\frac{4}{3}$	-2		
(iv)	$-\frac{1}{2}$	0		

Using the equation from question D (iii), does the point $(-6,-10)$ satisfy the equation? Show your work algebraically.

Example E: If they exist, find the slope and y-intercept for each equation given in the table below then graph all the lines on the grid provided. Show at least three points on the line.

	Equation	m	b
(i)	$y=\frac{x}{4}-5$		
(ii)	$y=8-3 x$		
(iii)	$y=\frac{2}{3} x-1$		
(iv)	$y=-4$		
(v)	$x=-7$		

Example F:

A) Identify the slope and the vertical intercept of each linear relation and explain what they mean.
B) Write an equation to describe the relationship.
C) Identify the x-intercept and interpret its meaning.

