The Equation of a Line in Slope *y***-intercept Form:** y = mx + b

In the previous unit, we learned that a partial variation represents a linear relation with the form y = mx + b. We concluded:

A diagonal line has an equation in the form of y = mx + b where m is the and *b* is the ______. A line sloping down towards the right has a ______ slope whereas a line sloping up towards the right has a ______ slope. *The value of* the slope is the of x.

Example A: Graph the lines y = 3x + 2 and $y = -\frac{1}{2}x + 5$ V 2 2 4 (i) 2 (ii)

Example B: Consider $y = -\frac{1}{2}x + 5$, do the points (4,3) and (-6,8) lie on the line? Justify your answer in more than 1 way.

Steps on Graphing Lines

- **1.** Plot the y-intercept.
- 2. Start at the y-intercept and plot two more points using the slope.

Remember:

- a negative rise means you travel down from the y-intercept.
- A negative run means you travel left from the y-intercept.

MPM1D	Date
Example C:	Given the graphs below, determine their equations.

Horizontal Line:

Vertical Line:

Key Concepts

(2
	3

All <mark>vertical</mark> lines always have an		
because the	= 0. You cannot divide by 0.	

This equation does **not** follow the form y = mx + b.

 \Rightarrow The equation is in the form x = L, where L is the number that crosses the x-axis since all the x-values on the line are the same.

Example C: Graph the lines y = 2 and x = -1 on the grids above.

Example E: Given the value of the slope and y-intercept, determine the equation of the line for each set.

	т	b	Equation	Type of Line
(i)	-2	5		
(ii)	0	7		
(iii)	4	-2		
()	$\frac{1}{3}$	<u> </u>		
(iv)	$-\frac{1}{2}$	0		

Using the equation from question D (iii), does the point (-6,-10) satisfy the equation? Show your work algebraically.

MPM1D

Date

Example E: If they exist, find the slope and y-intercept for each equation given in the table below then graph all the lines on the grid provided. Show at least three points on the line.

	Equation	т	b
(i)	$y = \frac{x}{4} - 5$		
(ii)	y = 8 - 3x		
(iii)	$y = \frac{2}{3}x - 1$		
(iv)	<i>y</i> = -4		
(v)	<i>x</i> = -7		

Example F:

- A) Identify the slope and the vertical intercept of each linear relation and explain what they mean.
- B) Write an equation to describe the relationship.
- C) Identify the x-intercept and interpret its meaning.

