(A) Left-Hand Limit

If the values of $y=f(x)$ can be made arbitrarily close to L by taking x sufficiently close to a with $x<a$, then:

$$
\lim _{x \rightarrow a^{-}} f(x)=L_{1}
$$

Read as: The limit of the function $f(x)$ as x approaches a from the left is L_{1}.

Notes:

1. The function may or may not be defined at a.
2. DNE stands for Does Not Exist
3. L_{1} is a number, $L_{1} \in \Re$
4. ∞ is not a number, it is an arbitrary large \#
(B) Right- Hand Limit

If the values of $y=f(x)$ can be made arbitrarily close to L_{2} by taking x sufficiently close to a with $x>a$, then:

Read as: The limit of the function $y=f(x)$ as x approaches a from the right is L_{2}.

Notes:

1. L_{2} is a number, $L_{2} \in \Re$
2. The function may or may not be defined at a

(C) Limits and Their Existence

If the number L is the limit of a function $y=f(x)$ as x approaches a from both the left and right side then:

$$
\lim _{x \rightarrow a} f(x)=L
$$

Read as: The limit of the function $f(x)$ as x approaches a is L.

Notes:

1. $\lim _{x \rightarrow a} f(x)$ may exist even if $f(x)$ is not defined.

Ex. 1 Use the function $y=f(x)$ defined by the following graph to find each limit.

a) $\lim _{x \rightarrow-4^{-}} f(x)$
b) $\lim _{x \rightarrow-2^{-}} f(x)$
c) $\lim _{x \rightarrow-1^{-}} f(x)$
d) $\lim _{x \rightarrow 3^{-}} f(x)$

Ex. 2 Use the function $y=f(x)$ defined in Ex. 1 to find each limit.
a) $\lim _{x \rightarrow-4^{+}} f(x)$
b) $\lim _{x \rightarrow-2^{+}} f(x)$
c) $\lim _{x \rightarrow 3^{+}} f(x)$
d) $\lim _{x \rightarrow 1^{+}} f(x)$
e) $\lim _{x \rightarrow 0^{+}} f(x)$

Ex. 3 Use the function $y=f(x)$ defined in Ex. 1 to find each limit.
a) $\lim _{x \rightarrow 0} f(x)$
b) $\lim _{x \rightarrow-4} f(x)$
c) $\lim _{x \rightarrow-2} f(x)$
d) $\lim _{x \rightarrow 3} f(x)$
e) $\lim _{x \rightarrow 1} f(x)$
2. if $\lim _{x \rightarrow a} f(x)=L$ then
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$
3. if $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ then $\lim _{x \rightarrow a} f(x) D N E$
4. $\lim _{x \rightarrow a} f(x)=f(a)$. In this case, the graph of $f(x)$ passes through the point $(a, f(a))$, the limit of $f(x)$ exists and $f(a)$ is defined.

(D) Substitution

If the function is defined by a formula (algebraic expression) then the limit of the function at a point a may be determined by substitution.

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

.(\#4 in notes must be true) \qquad

Notes:

1. In order to use substitution, the function must be defined on both sides of the number a.
2. Substitution does not work if you get one of the following indeterminate cases.

$$
\begin{array}{llllll}
\frac{0}{0} & \frac{\infty}{\infty} & 0^{0} & \infty^{0} & 0 \times \infty & \infty-\infty
\end{array} 1^{\infty}
$$

(E) Piece - Wise Functions

If the function changes formula at a then:

1. Sketch the function if necessary.
2. Use the appropriate formula to find first the leftside and the right-side limits.
3. Compare the left-side and the right side limits to conclude about the limit of the function at a.
4. Determine value of $f(a)$.
5. If $\lim _{x \rightarrow a} f(x)=f(a)$ then the function is continuous at $x=a$.

Ex. 4 Find each limit.
a) $\lim _{x \rightarrow-1^{+}} \frac{x^{2}}{x+2}$
b) $\lim _{x \rightarrow-1^{-}} \frac{x^{2}}{x+2}$
c) $\lim _{x \rightarrow-1} \frac{x^{2}}{x+2}$
d) $\lim _{x \rightarrow 1^{-}} \sqrt{1-x}$
e) $\lim _{x \rightarrow 1^{+}} \sqrt{1-x}$
f) $\lim _{x \rightarrow 1} \sqrt{1-x}$

Ex. 5 Consider $f(x)=\left\{\begin{array}{l}x^{2}-1, x<2 \\ -2 x+6, x \geq 2\end{array}\right.$

Determine $\lim _{x \rightarrow 2} f(x)$. Is the function continuous?

